160. 

## Problem 20.69 (RHK)

A person in a car blows a trumpet sounding at 438 Hz . The car is moving toward a wall at $19.3 \mathrm{~m} \mathrm{~s}^{-1}$. We have to calculate (a) the frequency of sound as received at the wall and (b) the frequency of the reflected sound arriving back at the source.

## Solution:

Sound waves of frequency 438 Hz is emitted by a car moving with speed $19.3 \mathrm{~m} \mathrm{~s}^{-1}$. We will first estimate the frequency of sound received at a wall facing the moving car. The wavelength of sound received at the wall will be

$$
\lambda_{\text {wall }}=\left(\frac{v_{s}}{438}-\frac{19.3}{438}\right) \mathrm{m}=\frac{v_{s}}{438}\left(1-\frac{19.3}{v}\right) \mathrm{m}
$$

where $v_{s}=343 \mathrm{~m} \mathrm{~s}^{-1}$ is the speed of sound in air.
Therefore, the frequency $v_{\text {wall }}$ of the sound received at the wall will be

$$
v_{\text {wall }}=\frac{v}{\lambda_{\text {wall }}}=\frac{438}{\left(1-\frac{19.3}{343}\right)} \mathrm{Hz}=464 \mathrm{~Hz} .
$$

Frequency of the reflected sound waves received by the observer moving toward the wall with speed of $19.3 \mathrm{~m} \mathrm{~s}^{-1}$ will be

$$
v_{r}=\left(v_{\text {wall }}+\frac{19.3}{343 / 464}\right) \mathrm{Hz}=464\left(1+\frac{19.3}{343}\right) \mathrm{Hz}=490 \mathrm{~Hz} .
$$

