148.

Problem 20.33 (RHK)

Two sources of sound are separated by a distance of 5.0 m. They both emit sound at the same amplitude and frequency, 300 Hz, but they are 180° out of phase. We have to find points along the line connecting them where the sound intensity will be the largest.

Solution:

The points where the two sound waves interfere constructively will be located symmetrically about the mid-point. We depict this with the following diagram:

> A → 2,5 - x → 2.5 + x → B → 5.0 m

Let the equations of wave propagation of waves emitted by sources *A* and *B* be

$$y_1 = a \sin(kx_1 - \omega t),$$

and
$$y_2 = a \sin(kx_2 - \omega t + \pi),$$

where x_1 is the distance of a point measured from A and y_1 is a wave travelling from the left to the right, and x_2 is

the distance of a point measured from B and y_2 is a wave travelling from the right to the left.

Resultant wave is obtained by the superposition of y_1 and y_2 . It is

$$y = y_1 + y_2$$

= $2a\cos\left(\frac{k(x_2 - x_1)}{2} + \frac{\pi}{2}\right)\sin\left(\frac{k(x_1 + x_2)}{2} - \omega t + \frac{\pi}{2}\right).$

As shown in the diagram if the distances x_1 and x_2 are given in terms of distance from the mid-point between the sources *A* and *B*, we have

$$x_1 = 2.5 - x, x_2 = 2.5 + x.$$
$$x_2 - x_1 = 2x.$$

And

Condition for constructive interference will be

$$\frac{2\pi}{\lambda} \times \frac{2x}{2} = \frac{n\pi}{2}, \text{ where } n = 1, 3, 5, \dots$$

and
$$x = \frac{n\lambda}{4}.$$

Wavelength of the sound waves is

$$\lambda = \frac{343}{300}$$
 m = 1.143 m,
and
 $\frac{\lambda}{4} = 0.286$ m.

The points along the line joining the two sources where the intensity will be a maximum are symmetrically located about the mid-point at

 $x = \pm 0.286$ m, ± 0.853 m, ± 1.43 m, ± 2.0 m.

