148.

Problem 20.33 (RHK)

Two sources of sound are separated by a distance of 5.0 m . They both emit sound at the same amplitude and frequency, 300 Hz , but they are 180° out of phase. We have to find points along the line connecting them where the sound intensity will be the largest.

Solution:

The points where the two sound waves interfere constructively will be located symmetrically about the mid-point. We depict this with the following diagram:

Let the equations of wave propagation of waves emitted by sources A and B be

$$
\begin{aligned}
& y_{1}=a \sin \left(k x_{1}-\omega t\right) \\
& \text { and } \\
& y_{2}=a \sin \left(k x_{2}-\omega t+\pi\right)
\end{aligned}
$$

where x_{1} is the distance of a point measured from A and y_{1} is a wave travelling from the left to the right, and x_{2} is
the distance of a point measured from B and y_{2} is a wave travelling from the right to the left.

Resultant wave is obtained by the superposition of y_{1} and y_{2}. It is

$$
\begin{aligned}
y & =y_{1}+y_{2} \\
& =2 a \cos \left(\frac{k\left(x_{2}-x_{1}\right)}{2}+\frac{\pi}{2}\right) \sin \left(\frac{k\left(x_{1}+x_{2}\right)}{2}-\omega t+\frac{\pi}{2}\right) .
\end{aligned}
$$

As shown in the diagram if the distances x_{1} and x_{2} are given in terms of distance from the mid-point between the sources A and B, we have

And

$$
x_{1}=2.5-x, x_{2}=2.5+x .
$$

$$
x_{2}-x_{1}=2 x
$$

Condition for constructive interference will be

$$
\begin{aligned}
& \frac{2 \pi}{\lambda} \times \frac{2 x}{2}=\frac{n \pi}{2}, \text { where } n=1,3,5, \ldots \\
& \text { and }
\end{aligned}
$$

$$
x=\frac{n \lambda}{4} .
$$

Wavelength of the sound waves is

$$
\begin{aligned}
& \lambda=\frac{343}{300} \mathrm{~m}=1.143 \mathrm{~m}, \\
& \text { and } \\
& \frac{\lambda}{4}=0.286 \mathrm{~m} .
\end{aligned}
$$

The points along the line joining the two sources where the intensity will be a maximum are symmetrically located about the mid-point at

$$
x= \pm 0.286 \mathrm{~m}, \pm 0.853 \mathrm{~m}, \pm 1.43 \mathrm{~m}, \pm 2.0 \mathrm{~m} .
$$

