142.

Problem 20.9 (RHK)

A stone is dropped into a well. The sound of the splash is heard 3.00 s later. We have to find the depth of the well.

Solution:

Let the depth of the well be $h \mathrm{~m}$. As the stone is in freefall, its acceleration will be g. The time t_{1} taken by the stone to reach the bottom of the well is

$$
\begin{aligned}
& \frac{g t_{1}^{2}}{2}=h, \\
& \text { or } \\
& t_{1}=\sqrt{\frac{2 h}{g}} .
\end{aligned}
$$

The time t_{2} taken by the sound of splash in travelling the length of the well is

$$
t_{2}=\frac{h}{v_{s}},
$$

where v_{s} is the speed of sound in air and is taken to be $343 \mathrm{~m} \mathrm{~s}^{-1}$.

The total time $t=t_{1}+t_{2}$ is 3 s . We thus have the equation

$$
\begin{aligned}
& \frac{h}{v_{s}}+\sqrt{\frac{2}{g}} \times \sqrt{h}=3 \\
& \text { or } \\
& h+v_{s} \sqrt{\frac{2}{g}} \times \sqrt{h}-3 v_{s}=0
\end{aligned}
$$

Roots of this quadratic equation are

Substituting the values, we get

$$
\sqrt{h}=\frac{-154.9 \pm \sqrt{24010+4116}}{2}=\frac{-154.9 \pm 167.7}{2}
$$

The physical solution is
$\sqrt{h}=6.40$
and
$h=40.9 \mathrm{~m}$.

