139.

Problem 19.53 (RHK)

In an experiment on standing waves, a string 92.4 cm long is attached to the prong of an elastically driven tuning fork, which vibrates perpendicular to the length of the string at a frequency of 60 Hz . The mass of the string is 44.2 g . We have to calculate the tension in the string if it is to vibrate with four loops.

Solution:

Length of the string, $l=92.4 \mathrm{~cm}=0.924 \mathrm{~m}$.
Frequency of the standing wave at resonance is equal to the frequency of the tuning fork, $f=60 \mathrm{~Hz}$.

Mass of the string, $m=44.2 \mathrm{~g}=44.2 \times 10^{-3} \mathrm{~kg}$.
Mass per unit length of the string,
$\mu=m / l=44.2 \times 10^{-3} / 0.924 \mathrm{~kg} \mathrm{~m}^{-1}=0.0478 \mathrm{~kg} \mathrm{~m}^{-1}$.
As the string is vibrating with four loops, wavelength of the standing wave and its length are related as $2 \lambda=l$.

So, $\lambda=l / 2=0.462 \mathrm{~m}$.

Velocity of wave in the string,

$$
v=f \lambda=60 \times 0.462 \mathrm{~m} \mathrm{~s}^{-1}=27.72 \mathrm{~m} \mathrm{~s}^{-1} .
$$

Tension in the string,

$$
F=\mu v^{2}=(27.72)^{2} \times 0.0478 \mathrm{~N}=36.7 \mathrm{~N} .
$$

