138.

Problem 19.55 (RHK)

A piano wire 1.4 m long is made of steel with density 7.8 g cm⁻³ and Young's modulus 220 MPa. The tension in the wire produces a strain of 1.0%. We have to calculate the lowest resonant frequency of the wire.

Solution:

Length of the steel wire = 1.4 m. Density of steel, $\rho = 7.8$ g cm⁻³ = 7.8×10^3 kg m⁻³. Mass per unit length of the wire, $\mu = \pi r^2 \rho$, where *r* is the radius of the wire.

Young's modulus of steel, $E = 220 \times 10^9$ N m⁻².

Strain in the wire, $\Delta l/l = 0.01$.

Let the tension in the wire be F. Stress and strain are related by the modulus of elasticity as

$$E=rac{F/\pi r^2}{\Delta l/l}.$$

So we have

$$\frac{F}{\pi r^2} = 220 \times 10^9 \times \frac{1}{100}$$
 N m⁻² = 22×10⁸ N m⁻².

Speed of wave propagation in a stressed wire is given by

$$v = \sqrt{\frac{F}{\mu}} = \sqrt{\frac{F}{\pi r^2 \rho}} = \sqrt{\frac{22 \times 10^8}{7.8 \times 10^3}} \text{ m s}^{-1} = 531 \text{ m s}^{-1}.$$

Wavelength of the longest standing wave corresponds to the configuration when the two ends of the wire are nodes and there is only one loop. That is

$$\lambda = 2l = 2.8 \text{ m}.$$

Therefore, the lowest resonant frequency of the wire

$$f = \frac{v}{\lambda} = \frac{531}{2.8}$$
 Hz = 190 Hz.