135.

Problem 19.43 (RHK)

Vibrations from a 622-Hz tuning fork set up standing waves in a string clamped at both ends. The wave speed for the string is $388 \mathrm{~m} \mathrm{~s}^{-1}$. The standing wave has four loops and is formed by superposition of waves of amplitude 1.90 mm . We have to find (a) the length of the string; (b) equation for the displacement of the string as a function of position and time.

Solution:

Frequency of the tuning fork, $f=622 \mathrm{~Hz}$.
Wave speed for the string, $v=388 \mathrm{~m} \mathrm{~s}^{-1}$.
Travelling waves generated in the string by the vibrations of the tuning fork superpose to produce standing waves.

Wavelength λ and frequency f determine the speed v,

$$
\lambda=\frac{v}{f}=\frac{388}{622} \mathrm{~m}=0.624 \mathrm{~m}
$$

As the standing wave in the string has four loops, the length of the string $L=2 \lambda$.

Therefore, $L=1.248 \mathrm{~m}$.
Equation of standing waves formed out of travelling wave given by the functions

$$
\begin{aligned}
& y_{1}=y_{m} \sin k(x-v t) \\
& \text { and } \\
& y_{2}=y_{m} \sin k(x+v t)
\end{aligned}
$$

is given by

It is

$$
y=\left(2 y_{m} \sin k x\right) \cos 2 \pi f t .
$$

We now work out the numerical values of variables in the above function.

$$
\begin{aligned}
& 2 y_{m}=3.80 \times 10^{-3} \mathrm{~m} \\
& \text { and } \\
& k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{0.624} \mathrm{~m}^{-1} \\
& \text { and } \\
& 2 \pi f=2 \pi \times 622=3908 .
\end{aligned}
$$

The equation of the standing wave is

$$
y=3.80 \times 10^{-3} \sin (10.1 x) \cos (3908 t) \mathrm{m},
$$

where x and y are in meter and t is in second.

