134.

Problem 17.49E (HRW)

A string fixed at both ends is 8.40 m long and has a mass of 0.120 kg . It is subjected to a tension of 96.0 N and set oscillating. We have to find the following:
(a) the speed of the waves on the string; (b) the longest possible wavelength for a standing wave; and (c) the frequency of that wave.

Solution:

(a)

We first find the mass per unit length, μ, of the string.

$$
\begin{aligned}
& \text { Length of the string }=8.40 \mathrm{~m} \text {, } \\
& \text { and } \\
& \text { mass of the string }=0.120 \mathrm{~kg} \text {. }
\end{aligned}
$$

Therefore,

$$
\mu=\frac{0.120 \mathrm{~kg}}{8.4 \mathrm{~m}}=0.0143 \mathrm{~kg} \mathrm{~m}^{-1} .
$$

String is subjected to a tension, T, of 96.0 N . Therefore, the speed of wave motion in the string v is

$$
v=\sqrt{\frac{T}{\mu}}=\sqrt{\frac{96.0}{1.43 \times 10^{-2}}} \mathrm{~m} \mathrm{~s}^{-1}=81.9 \mathrm{~m} \mathrm{~s}^{-1} .
$$

(b)

The longest possible wavelength of standing waves on the string corresponds to when its ends are nodes. That is

$$
\lambda=2 L=2 \times 8.40 \mathrm{~m}=16.8 \mathrm{~m} .
$$

(c)

Frequency, f, of this wave will be

$$
f=\frac{v}{\lambda}=\frac{81.9 \mathrm{~m} \mathrm{~s}^{-1}}{16.8 \mathrm{~m}}=4.87 \mathrm{~Hz}
$$

