133.

Problem 17.47E (HRW)

Two sinusoidal waves with identical wavelengths and amplitudes travel in opposite directions along a string with a speed of $10 \mathrm{~cm} \mathrm{~s}^{-1}$. The time interval between instants when the string is flat is 0.50 s . We have to find the wavelength of the waves.

Solution:

As the two identical waves are moving along a string in opposite directions with a speed of $10 \mathrm{~cm} \mathrm{~s}^{-1}$, they can be represented by the functions

$$
\begin{aligned}
& y_{1}=a \sin k(x-10 t), \\
& \text { and } \\
& y_{2}=a \sin k(x+10 t) .
\end{aligned}
$$

The resultant wave is

$$
\begin{aligned}
y=y_{1}+y_{2} & =a(\sin (k x-10 k t)+\sin (k x+10 k t)), \\
& =2 a \sin k x \cos 10 k t .
\end{aligned}
$$

The time interval T between instants when the string is flat is 0.50 s . This implies
$10\left(\mathrm{~cm} \mathrm{~s}^{-1}\right) k \times 0.5(\mathrm{~s})=\pi$,
or
$10 \times \frac{2 \pi}{\lambda} \times 0.5=\pi$,
or
$\lambda=10 \mathrm{~cm}$.

