132.

Problem 17.43P (HRW)

Three sinusoidal waves of the same frequency travel along a string of in the positive direction of an x axis. Their amplitudes are $y_1, y_1/2$, and $y_1/3$, and their phase constants are 0, $\pi/2$ and π , respectively. We have to find the amplitude and the phase constant of the resultant wave.

Solution:

From the data of the problem we can write the functions for the three waves as

$$\psi_1 = y_1 \sin(kx - \omega t),$$

$$\psi_2 = y_1/2 \sin(kx - \omega t + \pi/2) = y_1/2 \cos(kx - \omega t),$$

and

$$\psi_3 = y_1/3\sin(kx - \omega t + \pi) = -y_1/3\sin(kx - \omega t).$$

By the principle of superposition the resultant wave will be described by the function

$$\psi = \psi_1 + \psi_2 + \psi_3$$

= $y_1 \sin(kx - \omega t) + \frac{y_1}{2}\cos(kx - \omega t) - \frac{y_1}{3}\sin(kx - \omega t)$
= $\frac{2y_1}{3}\sin(kx - \omega t) + \frac{y_1}{2}\cos(kx - \omega t).$

We define

$$\sin\theta = \frac{1/2}{\left(\left(1/2\right)^2 + \left(2/3\right)^2\right)^{\frac{1}{2}}} = \frac{3}{5},$$

and

$$\cos\theta = \frac{2/3}{\left(\left(1/2\right)^2 + \left(2/3\right)^2\right)^{\frac{1}{2}}} = \frac{4}{5}.$$

The resultant wave can thus be expressed by the function

$$\psi = \frac{5}{6} y_1 \sin(kx - \omega t + \theta).$$

Therefore, the amplitude of the resultant wave is

$$a = \frac{5}{6}y_1 = 0.83y_1$$
,
ant is

and its phase constant is $\theta = \sin^{-1} 3/5 = 36.8^{\circ}.$