132.

Problem 17.43P (HRW)

Three sinusoidal waves of the same frequency travel along a string of in the positive direction of an x axis. Their amplitudes are $y_{1}, y_{1} / 2$, and $y_{1} / 3$, and their phase constants are $0, \pi / 2$ and π, respectively. We have to find the amplitude and the phase constant of the resultant wave.

Solution:

From the data of the problem we can write the functions for the three waves as

$$
\begin{aligned}
& \psi_{1}=y_{1} \sin (k x-\omega t), \\
& \psi_{2}=y_{1} / 2 \sin (k x-\omega t+\pi / 2)=y_{1} / 2 \cos (k x-\omega t), \\
& \text { and } \\
& \psi_{3}=y_{1} / 3 \sin (k x-\omega t+\pi)=-y_{1} / 3 \sin (k x-\omega t) .
\end{aligned}
$$

By the principle of superposition the resultant wave will be described by the function

$$
\begin{aligned}
\psi & =\psi_{1}+\psi_{2}+\psi_{3} \\
& =y_{1} \sin (k x-\omega t)+\frac{y_{1}}{2} \cos (k x-\omega t)-\frac{y_{1}}{3} \sin (k x-\omega t) \\
& =\frac{2 y_{1}}{3} \sin (k x-\omega t)+\frac{y_{1}}{2} \cos (k x-\omega t) .
\end{aligned}
$$

We define

$$
\begin{aligned}
& \sin \theta=\frac{1 / 2}{\left((1 / 2)^{2}+(2 / 3)^{2}\right)^{1 / 2}}=\frac{3}{5}, \\
& \text { and }
\end{aligned}
$$

$$
\cos \theta=\frac{2 / 3}{\left((1 / 2)^{2}+(2 / 3)^{2}\right)^{1 / 2}}=\frac{4}{5} .
$$

The resultant wave can thus be expressed by the function

$$
\psi=\frac{5}{6} y_{1} \sin (k x-\omega t+\theta) .
$$

Therefore, the amplitude of the resultant wave is

$$
a=\frac{5}{6} y_{1}=0.83 y_{1},
$$

and its phase constant is

$$
\theta=\sin ^{-1} 3 / 5=36.8^{\circ} .
$$

