## 131.

## Problem 17.39E (HRW)

Two sinusoidal waves of the same wavelength travel in the same direction along a stretched string with amplitudes of 3.0 cm and 4.0 cm and they have phase constants of 0 and $\pi / 2$, respectively. We have to determine the amplitude of the resultant wave.

## Solution:

We represent the two waves by the functions

$$
\begin{aligned}
& y_{1}=3.0 \sin (k x-\omega t), \\
& y_{2}=4.0 \sin (k x-\omega t+\pi / 2)=4.0 \cos (k x-\omega t) .
\end{aligned}
$$

The combined wave will be given by the expression

$$
\begin{aligned}
y & =3.0 \sin (k x-\omega t)+4.0 \cos (k x-\omega t), \\
& =5.0\left(\frac{3.0}{\sqrt{3^{2}+4^{2}}} \sin (k x-\omega t)+\frac{4.0}{\sqrt{3^{2}+4^{2}}} \cos (k x-\omega t)\right) .
\end{aligned}
$$

$\cos \theta=\frac{3}{\sqrt{3^{2}+4^{2}}}$,
then
$\sin \theta=\frac{4}{\sqrt{3^{2}+4^{2}}}$.

We thus find the function for the combined wave,

$$
y=5.0 \sin (k x-\omega t+\theta)
$$

Amplitude of the resultant wave is 5.0 cm and its phase is $\theta$.


