129.

Problem 19.37 (RHK)

A source S and a detector D of high-frequency waves are a distance d apart on the ground. The direct wave from S is found to be in phase at D with the wave from S that is reflected from a horizontal layer at an altitude H. The incident reflected rays make the same angle with the reflecting layer. When the layer rises a distance h, no signal is detected at D. We have to find the relation between d, h, H, and the wavelength λ of the waves. We can neglect absorption in the atmosphere.

Solution:

The distance between the source S and detector D of high frequency waves is d. Let us consider the situation when the direct wave from S to D is in phase with wave from S
that reaches D on reflection from a horizontal layer at an altitude H. This situation requires that the path difference between the direct ray and the reflected ray be an integral multiple of wavelength λ. That is

$$
2 \sqrt{\left(\frac{d}{2}\right)^{2}+H^{2}}-d=n \lambda
$$

where n is some integer.
According to the problem, no signal is detected at D when the reflecting layer rises a distance h. This implies that now the path difference would have increased by $\lambda / 2$. That is

$$
2 \sqrt{\left(\frac{d}{2}\right)^{2}+(H+h)^{2}}-d=\left(n+\frac{1}{2}\right) \lambda .
$$

Using the result that

$$
n \lambda=2 \sqrt{\left(\frac{d}{2}\right)^{2}+H^{2}}-d,
$$

we get

$$
\sqrt{d^{2}+4(H+h)^{2}}=\sqrt{d^{2}+4 H^{2}}+\frac{\lambda}{2},
$$

or

$$
\lambda=2\left(\sqrt{d^{2}+4(H+h)^{2}}-\sqrt{d^{2}+4 H^{2}}\right) .
$$

