128.

Problem 19.36 (RHK)

We consider two point sources S_{1} and S_{2}, which emit waves of the same frequency and amplitude. The waves start in the same phase, and this phase relation at the sources is maintained throughout time. We consider points P at which r_{1} is nearly equal to r_{2}. We have to show (a) that the superposition of these two waves gives a wave whose magnitude y_{m} varies with the position P approximately according to

$$
y_{m}=\frac{2 Y}{r} \cos \frac{k}{2}\left(r_{1}-r_{2}\right),
$$

in which $r=\left(r_{1}+r_{2}\right) / 2$. (b) We then have to show that total cancellation occurs when $r_{1}-r_{2}=\left(n+\frac{1}{2}\right) \lambda, n$ being any integer, and the total re-enforcement occurs when $r_{1}-r_{2}=n \lambda$. The locus of points whose difference in distance from two fixed points is a constant is a hyperbola, the fixed points being the foci. Hence each value of n gives a hyperbolic line of constructive interference and a hyperbolic line of destructive
interference. At points at which r_{1} and r_{2} are not approximately equal (as near the sources), the amplitudes of the waves from S_{1} and S_{2} differ and cancellations are only partial.

Solution:

We will write functions representing spherical waves of the same frequency and amplitude emitted by sources S_{1} and S_{2}. We assume that the waves from S_{1} and S_{2} start in the same phase and this relation is maintained throughout time. These functions are

$$
\begin{aligned}
& y_{1}=\frac{Y}{r_{1}} \sin k\left(r_{1}-v t\right) \\
& y_{2}=\frac{Y}{r_{2}} \sin k\left(r_{2}-v t\right),
\end{aligned}
$$

where r_{1} and r_{2} are distances measured from S_{1} and S_{2}, respectively. The resultant wave at any point in space will be given by the superposition of these two spherical waves. If at some point P the distances r_{1} and r_{2} are
approximately equal, we may approximate Y / r_{1} and Y / r_{2}
by $\frac{Y}{\left(r_{1}+r_{2}\right) / 2}$.
In this approximation,

$$
y=y_{1}+y_{2}=\frac{Y}{\left(r_{1}+r_{2}\right) / 2}\left(\sin k\left(r_{1}-v t\right)+\sin k\left(r_{2}-v t\right)\right)
$$

Or,

$$
y=\frac{2 Y}{r} \cos \frac{k}{2}\left(r_{1}-r_{2}\right) \sin k(r-v t),
$$

where

$$
r=\frac{r_{1}+r_{2}}{2} .
$$

We rewrite the resultant wave function in the form

$$
y=y_{m} \sin k(r-v t) .
$$

Amplitude y_{m} varies with position P approximately as

$$
y_{m}=\frac{2 Y}{r} \cos \frac{k}{2}\left(r_{1}-r_{2}\right) .
$$

From this expression we note that $y_{m}=0$, for

$$
\left\{\begin{array}{l}
\frac{k}{2}\left(r_{1}-r_{2}\right)=\left(n+\frac{1}{2}\right) \pi, \text { or } \\
\left(r_{1}-r_{2}\right)=\left(n+\frac{1}{2}\right) \lambda
\end{array}\right\}, n \text { being any integer. }
$$

In this situation there is total cancellation of the waves reaching at P from sources S_{1} and S_{2}.

And, at points where

$$
\begin{aligned}
& \frac{k}{2}\left(r_{1}-r_{2}\right)=n \pi,(k=2 \pi / \lambda), \\
& \text { or where } \\
& \left(r_{1}-r_{2}\right)=n \lambda,
\end{aligned}
$$

the two waves reinforce each other and there is constructive interference.

The locus of points whose difference in distance from two fixed points is a constant describes a hyperbola, the fixed points being foci. Hence each value of n gives a hyperbolic line of constructive interference and a hyperbolic line of destructive interference.

