127.

Problem 19.27 (RHK)

A wave travels out uniformly in all directions from a point source. (a) We have to justify that the expression for the displacement y of the medium at any distance r from the from the source is

$$
y=\frac{Y}{r} \sin k(r-v t)
$$

We have to consider the speed, direction of propagation, periodicity, and intensity of the wave.
(b) We have to find the dimension of the constant Y.

Solution:

(a)

The intensity, I, of a spherical wave at a distance r from its source has to vary as $1 / r^{2}$, because $I \times\left(4 \pi r^{2}\right)$, which is the total amount of energy flowing per second through a spherical surface of radius r centred at the source, is equal to the power of the source and is therefore a number independent of the variable r. We know that the
intensity of a wave is proportional to the modulus square of its amplitude.

We will justify that the function

$$
y=\frac{Y}{r} \sin k(r-v t) .
$$

describes spherical waves. As the function $\sin k(r-v t)$ is of the generic form $f(r-v t)$ it represents wave motion along the direction of increasing r. From this function we note that the speed of the wave is v and the frequency of the wave $\omega=v k$, where k the wave number of the wave determines the wavelength $\lambda=2 \pi / k$. As the intensity of wave motion is proportional to the square of the amplitude, which for the function is Y^{2} / r^{2}, where Y is a constant, it describes spherical wave propagation. (b)

As y represents the displacement of the medium, its dimension has to be that of length [L]. Therefore, the dimension of the constant Y islength ${ }^{2}[\mathrm{~L}]^{2}$.

