124.

Problem 19.23 (RHK)

A non-uniform wire of length L and mass M has a variable linear mass density given by $\mu=k x$, where x is the distance from one end of the wire and k is a constant. We have to show (a) that $M=k L^{2} / 2$. (b) We have to show that the time t required for a pulse generated at one end of the wire to travel to the other end is given by $t=\sqrt{8 M L / 9 F}$, where F is the tension in the wire.

Solution:

(a)

Mass density of the wire is $\mu=k x$. Therefore, mass of the wire is

$$
M=\int_{0}^{L} k x d x=\frac{1}{2} k L^{2}
$$

(b)

Speed of wave motion in the wire will be a function of position x as mass density varies with x. As the wire is under uniform tension F, we have

$$
v(x)=\sqrt{\frac{F}{k x}}
$$

Therefore, the time t required by a wave pulse generated at one end to travel to the other end of the wire will be

$$
t=\int_{0}^{L} \frac{d x}{v(x)}=\int_{0}^{L} \frac{d x \sqrt{k x}}{\sqrt{F}}=\frac{2}{3} L^{3 / 2} \sqrt{\frac{k}{F}}=\sqrt{\frac{4}{9} L^{3} \times \frac{2 M}{L^{2} F}}=\sqrt{\frac{8 M L}{9 F}} .
$$

