123.

Problem 19.19 (RHK)

A wire 10.3 m long and having a mass of $97.8 \mathrm{~g} / \mathrm{s}$ is stretched under a tension of 248 N . If two pulses, separated in time by 29.6 ms , are generated one at each end of the wire, we have to find where the pulses will meet.

Solution:

Data of the problem are:
length of the wire, $l=10.3 \mathrm{~m}$;
mass of the wire, $m=97.8 \mathrm{~g}$.
Mass per unit length of the wire will be, $\mu=\frac{m}{l}=\frac{0.0978}{10.3} \mathrm{~kg} \mathrm{~m}^{-1}$.

Wire is under tension, $T=248 \mathrm{~N}$.
Speed of transverse wave motion in the wire will therefore be

$$
v=\sqrt{\frac{T}{\mu}}=\sqrt{\frac{248}{0.95 \times 10^{-2}}}=161.6 \mathrm{~m} \mathrm{~s}^{-1}
$$

Distance travelled by the first pulse in 29.6 ms from the end where it is generated will be

$$
l_{1}=161.6 \times 29.6 \times 10^{-3} \mathrm{~m}=4.8 \mathrm{~m} .
$$

Distance of the position l_{1} from the other end of the wire will be

$$
d=(10.3-4.8) \mathrm{m} .
$$

As the second pulse is released from the second end of the wire at 29.6 ms , the two pulses will meet at a distance y from the first end, given by

$$
y=(4.8+d / 2) \mathrm{m}=(4.8+5.5 / 2) \mathrm{m}=7.5 \mathrm{~m} .
$$

