121.

Problem 17.29P (HRW)

We consider the arrangement in which two strings of different linear mass density hold a mass through pulleys as shown in the figure 1. String 1 has linear density of $3.00 \mathrm{~g} / \mathrm{m}$ and string 2 has a linear density of $5.00 \mathrm{~g} / \mathrm{m}$. They are under tension owing to the hanging block of mass $M=500 \mathrm{~g}$. We have to calculate (a) the wave speed in each string. (b) In the situation when the block is divided into two blocks (with $M=M_{1}+M_{2}$) and the apparatus is rearranged as shown in the figure 2 . We have to find M_{1} and M_{2} such that the wave speeds in the two strings are equal.

Figure 1

Figure 2

Solution:

(a)

Speed of wave motion in a taut string is given be the relation

$$
v=\sqrt{\frac{T}{\mu}},
$$

where T is the tension in the string and μ is its mass per unit length.

In solving the first part of the problem we will use the following data

Mass per unit length of string $1, \mu_{1}=3.0 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-1}$, and

Mass per unit length of string 2, $\mu_{2}=5.0 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{-1}$.
Tension in each of the strings
$T=\frac{1}{2} \times 0.5 \times 9.8 \mathrm{~N}=2.45 \mathrm{~N}$.
Using the result that wave speed in a string,

$$
v=\sqrt{\frac{T}{\mu}}
$$

we find that the wave speed in string 1

$$
v_{1}=\sqrt{\frac{2.45}{3 \times 10^{-3}}} \mathrm{~m} \mathrm{~s}^{-1}=28.6 \mathrm{~m} \mathrm{~s}^{-1}
$$

And, wave speed in string 2
(b)

$$
v_{2}=\sqrt{\frac{2.45}{5.0 \times 10^{-3}}} \mathrm{~m} \mathrm{~s}^{-1}=22.1 \mathrm{~m} \mathrm{~s}^{-1}
$$

We next consider the situation when the block of mass 500 g is to be so divided into two pieces, which when hanged with strings 1 and 2 independently will result in equal wave speeds in both the strings. This is equivalent to the condition

$$
\begin{aligned}
& \sqrt{\frac{M_{1} g}{\mu_{1}}}=\sqrt{\frac{M_{2} g}{\mu_{2}}}, \\
& \text { or } \\
& \frac{M_{1}}{\mu_{1}}=\frac{M-M_{1}}{\mu_{2}}
\end{aligned}
$$

We find,

$$
M_{1}=\frac{M \mu_{1}}{\mu_{1}+\mu_{2}}=\frac{500 \times 3}{(3+5)} \mathrm{g}=187.5 \mathrm{~g}
$$

and

$$
M_{2}=312.5 \mathrm{~g}
$$

