120.

Problem 15.55 (RHK)

A simple pendulum of length L and mass m is suspended in a car that is travelling with a constant speed v around a circle of radius R. Pendulum undergoes small oscillations in a radial direction about its equilibrium position. We have to find the frequency of oscillation.

Solution:

It is given that a bob with a string is hanging in a car that is travelling with a constant speed v around a circle of radius R. The required centripetal force is obtained by the incline of the string attached to the bob by angle θ_{0} from the vertical. The component of the weight of the bob perpendicular to the string $m g \sin \theta_{0}$ provides the centripetal force, that is

$$
m g \sin \theta_{0}=\frac{m v^{2}}{R}
$$

or

$$
\sin \theta_{0}=\frac{v^{2}}{R g}
$$

Let the bob be displaced by a small angle θ. We will show that for small oscillation the bob will execute simple harmonic motion as a simple pendulum.

When the pendulum is displaced by an additional angle θ restoring force on the bob will be

$$
m g \sin \left(\theta_{0}+\theta\right)
$$

Let us consider motion in a uniformly rotating frame with angular speed $\omega=v / R$. Let the length of the string with which the bob is hanging be L. Equation of motion of the bob in this frame of reference will be

$$
m L \frac{d^{2} \theta}{d t^{2}}-\frac{m v^{2}}{R}+m g \sin \left(\theta_{0}+\theta\right)=0
$$

Under the approximation

$$
\sin \theta \approx \theta, \text { and } \cos \theta \approx 1
$$

equation of motion reduces to the form

$$
L \frac{d^{2} \theta}{d t^{2}}-\frac{v^{2}}{R}+g\left(\sin \theta_{0}+\theta \cos \theta_{0}\right)=0
$$

Using the result

$$
g \sin \theta_{0}=\frac{v^{2}}{R}
$$

equation of motion simplifies to the form

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L}\left(1-\sin ^{2} \theta_{0}\right)^{1 / 2} \theta=0 .
$$

It is an equation of SHM. Frequency of oscillation is

$$
\frac{2 \pi}{T}=\sqrt{\frac{g}{L}\left(1-\left(\frac{v^{2}}{R g}\right)^{1 / 2}\right)}
$$

where T is the period of oscillation. Frequency v of the pendulum is

$$
v=\frac{1}{T}=\frac{1}{2 \pi} \sqrt{\frac{g}{L}\left(1-\left(\frac{v^{2}}{R g}\right)^{1 / 2}\right)} .
$$

