119.

Problem 15.47 (RHK)

A physical pendulum consists of a meter stick that is pivoted at a small hole drilled through the stick a distance x from the $50.0-\mathrm{cm}$ mark. The period of oscillation is observed to be 2.50 s . We have to find the distance x.

Solution:

Let the mass of the meter stick be m. We denote its length, which is 1.0 m , by L. The rotational inertia of the stick about the axis passing through its centre of mass is $m L^{2} / 12$. Therefore, its rotational inertia about the axis passing through the pivot, which is at a distance x from the centre of the meter stick, will be

$$
I=\frac{m L^{2}}{12}+m x^{2}
$$

Period of the physical pendulum is given by the expression
$T=2 \pi \sqrt{\frac{I}{m g x}}$,
or
$T^{2} m g x=4 \pi^{2}\left(\frac{m L^{2}}{12}+m x^{2}\right)$,
or

$$
x^{2}-\frac{T^{2} g}{4 \pi^{2}} x+\frac{L^{2}}{12}=0 .
$$

Substituting $L=1.0 \mathrm{~m}$ and $T=2.50 \mathrm{~s}$, we have the quadratic equation

$$
x^{2}-1.55 x+\frac{1}{12}=0
$$

Roots of this quadratic equation are
$x=5.5 \mathrm{~cm}, 1.5 \mathrm{~m}$.
As we are considering oscillations of a meter rod, the physical solution is $x=5.5 \mathrm{~cm}$.

