114.

Problem 15.49 (RHK)

A pendulum is formed by pivoting a long thin rod of length L and mass m about a point on the rod which is a distance d above the centre of the rod. We have to find (a) the small-amplitude period of this pendulum in terms of d, L, m, and g. (b) We have to show that the period has a minimum value when $d=L / \sqrt{12}=0.289 L$.

Solution:

It is given that a pendulum has been formed by pivoting a long thin rod of length L and mass m about a point distance d from the centre of the rod. The rotational inertia of the rod about its centre is $m L^{2} / 12$. Using the parallel axis theorem the rotational inertia of the rod about an axis passing through the pivot is found to be

$$
I=\frac{1}{12} m L^{2}+m d^{2}
$$

The small-amplitude period of SHM of this rod will be

$$
\begin{aligned}
T=2 \pi \sqrt{\frac{I}{m g d}} & =2 \pi \sqrt{\frac{\left(\frac{1}{12} m L^{2}+m d^{2}\right)}{m g d}} \\
& =2 \pi \sqrt{\frac{\left(\frac{1}{12} L^{2}+d^{2}\right)}{g d}}
\end{aligned}
$$

Equivalently, we have

$$
\frac{\bar{T}^{2}}{4 \pi^{2}}=\left(\frac{L^{2}}{12}+d^{2}\right) \times \frac{1}{g d}
$$

We will find the minimum value of T, by obtaining the equation of extremum

$$
\frac{d\left(T^{2} g / 4 \pi\right)}{d^{\prime} d^{\prime}}=0
$$

or

$$
\left(\frac{L^{2}}{12}+d^{2}\right) \times\left(\frac{-1}{d^{2}}\right)+2=0
$$

Its solutions is

$$
\begin{aligned}
& \frac{L^{2}}{12 d^{2}}=1 \\
& \text { or } \\
& d=\frac{L}{\sqrt{12}}=0.289 L
\end{aligned}
$$

