113.

Problem 15.45 (RHK)

A physical pendulum consists of a uniform solid disk of mass $M=563 \mathrm{~g}$ and radius $R=14.4 \mathrm{~cm}$ supported in a vertical plane by a pivot located a distance $d=10.2 \mathrm{~cm}$ from the centre of the disk. The disk is displaced by a small angle and released. We have to find the period of the resulting simple harmonic motion.

Solution:

The centre of mass of the physical pendulum will be at the centre of the circular disk. Rotational inertia of a uniform disk of mass M and radius R about the axis passing through its CM and perpendicular to the plane of the disk is

$$
I_{c m}=\frac{1}{2} M R^{2} .
$$

By the parallel axis theorem the rotational inertia of the disk about the axis passing through the pivot will be

$$
I_{p}=\frac{1}{2} M R^{2}+M d^{2} .
$$

Let us consider small oscillations of the physical pendulum about its pivot.

Let at some instant the line joining the pivot to the CM be at angle θ from the vertical. Torque exerted by the weight of the pendulum about the axis passing through the CM will be

$$
\tau=-M g d \sin \theta .
$$

As we are considering small oscillations, for small angles we can approximate

$$
\sin \theta \approx \theta
$$

Equation of motion of the physical pendulum in this approximation is

$$
I_{p} \frac{d^{2} \theta}{d t^{2}}+M g d \theta=0
$$

It is an equation of SHM with period T given by the relation

$$
\begin{aligned}
& \frac{2 \pi}{T}=\sqrt{\frac{M g d}{I_{p}}} \\
& \text { or } \\
& T=2 \pi \sqrt{\frac{I_{p}}{M g d}}=2 \pi \sqrt{\frac{\left(\frac{1}{2} R^{2}+d^{2}\right)}{g d}}
\end{aligned}
$$

Substituting $R=14.4 \mathrm{~cm}$ and $d=10.2 \mathrm{~cm}$, we calculate the value of T,

$$
\begin{aligned}
T & =2 \pi \sqrt{\frac{\left(\frac{1}{2} \times 14.4^{2}+10.2^{2}\right) \times 10^{-4}}{9.8 \times 10.2 \times 10^{-2}}} \mathrm{~s} \\
& =906 \mathrm{~ms}
\end{aligned}
$$

