106.

Problem 16.37P (HRW)

A uniform spring whose unstretched length is L has a spring constant k. The spring is cut into two pieces of unstretched lengths L_{1} and L_{2}, with $L_{1}=n L_{2}$. We have to find (a) the corresponding spring constants k_{1} and k_{2} in terms of n and k. (b) If a block is attached to the original spring, it oscillates with frequency f. If the spring is replaced with the piece L_{1} or L_{2}, the corresponding frequency is f_{1} or f_{2}. We have to find f_{1} and f_{2} in terms of f.

Solution:

(a)

It is given that the unstretched length of the spring is L and that it has been cut into two pieces of lengths L_{1} and
L_{2}, with $L_{1}=n L_{2}$. Let the spring of force constant k stretch by length x under a force F. It may be appreciated that at equilibrium each section of the spring will experience the same force F. We will use this property to answer the problem.
Let us say that the portion of the spring with unstretched length L_{1} stretches by length x_{1} when the uncut spring stretches by length x. And, the portion of the spring with unstretched length L_{2} stretch by length x_{2}.

We have

$$
\begin{aligned}
& L=L_{1}+L_{2}=(n+1) L_{2}, \\
& \text { and } \\
& x_{1}=\frac{n}{n+1} x, x_{2}=\frac{1}{n+1} x .
\end{aligned}
$$

As each portion of the spring is subject to the same force F , we can now find spring constant, k_{1}, for the portion with the length L_{1}, and the spring constant, k_{2}, for the portion with the length L_{2}, by the requirement

$$
\begin{aligned}
& k x=k_{1} \frac{n}{n+1} x, \text { which gives } k_{1}=\frac{(n+1)}{n} k, \\
& \text { and } \\
& k x=k_{2} \frac{1}{n+1} x, \text { which gives } k_{2}=(n+1) k .
\end{aligned}
$$

(b)

If the original spring oscillates with frequency f when a block of mass m is attached to it, then

$$
f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} .
$$

When the same block is attached to springs of lengths L_{1} and L_{2}, there will be SHM with frequencies determined by k_{1} and k_{2}, respectively. We have

$$
\begin{aligned}
& f_{1}=\frac{1}{2 \pi} \sqrt{\frac{(n+1)}{n} \times \frac{k}{m}}=\sqrt{\frac{(n+1)}{n}} f, \\
& \text { and } \\
& f_{2}=\frac{1}{2 \pi} \sqrt{\frac{(n+1) k}{m}}=\sqrt{(n+1)} f .
\end{aligned}
$$

