106.

Problem 16.37P (HRW)

A uniform spring whose unstretched length is L has a spring constant k. The spring is cut into two pieces of unstretched lengths L_1 and L_2 , with $L_1 = nL_2$. We have to find (a) the corresponding spring constants k_1 and k_2 in terms of n and k. (b) If a block is attached to the original spring, it oscillates with frequency f. If the spring is replaced with the piece L_1 or L_2 , the corresponding frequency is f_1 or f_2 . We have to find f_1 and f_2 in terms of f.

Solution:

(a)

It is given that the unstretched length of the spring is L and that it has been cut into two pieces of lengths L_1 and L_2 , with $L_1 = nL_2$. Let the spring of force constant k stretch by length x under a force F. It may be appreciated that at equilibrium each section of the spring will experience the same force F. We will use this property to answer the problem.

Let us say that the portion of the spring with unstretched length L_1 stretches by length x_1 when the uncut spring stretches by length x. And, the portion of the spring with unstretched length L_2 stretch by length x_2 .

We have

As each portion of the spring is subject to the same force F, we can now find spring constant, k_1 , for the portion with the length L_1 , and the spring constant, k_2 , for the portion with the length L_2 , by the requirement

$$kx = k_1 \frac{n}{n+1} x$$
, which gives $k_1 = \frac{(n+1)}{n} k$,
and
 $kx = k_2 \frac{1}{n+1} x$, which gives $k_2 = (n+1)k$

(b)

If the original spring oscillates with frequency f when a block of mass m is attached to it, then

$$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \; .$$

When the same block is attached to springs of lengths L_1 and L_2 , there will be SHM with frequencies determined by k_1 and k_2 , respectively. We have

$$\begin{split} f_1 &= \frac{1}{2\pi} \sqrt{\frac{(n+1)}{n} \times \frac{k}{m}} = \sqrt{\frac{(n+1)}{n}} f ,\\ \text{and} \\ f_2 &= \frac{1}{2\pi} \sqrt{\frac{(n+1)k}{m}} = \sqrt{(n+1)} f . \end{split}$$