105.

## Problem 15.22(RHK)

Two springs are joined and connected to a block of mass m (see diagram). The surfaces are frictionless. If the springs separately have force constants  $k_1$  and  $k_2$ , we have to show that the frequency of oscillation of the block is

$$v = \frac{1}{2\pi} \sqrt{\frac{k_1 k_2}{(k_1 + k_2)m}} = \frac{v_1 v_2}{\sqrt{v_1^2 + v_2^2}},$$

where  $v_1$  and  $v_2$  are the frequencies at which the blocks would oscillate if connected only to spring 1 or spring 2.

## **Solution**

Let the block be displaced to the right from its equilibrium position by distance *x*. Let the spring with force constant  $k_1$  be stretched from its relaxed length by  $x_1$  and the spring with force constant  $k_2$  be stretched from its relaxed length by  $x_2$ . Then  $x = x_1 + x_2$ .

Let the restoring force on the block be *F*. As both the springs are stretched by force *F*, we have

$$F = k_1 x_1 ,$$

and

$$F = k_2 x_2 \; .$$

We thus have the relation

$$\frac{x}{F} = \left(\frac{1}{k_1} + \frac{1}{k_2}\right).$$

Let us define



In terms of k, F = kx.

Equation of motion of the block of mass m is

$$m\frac{d^{2}x}{dt^{2}} = -F ,$$
  
or  
$$\frac{d^{2}x}{dt^{2}} + kx = 0$$

It is an equation of SHM with frequency

$$v = \frac{1}{2\pi} \sqrt{\frac{k}{m}} ,$$
  
where  
$$k = \frac{k_1 k_2}{k_1 + k_2}.$$

Force constants  $k_1$  and  $k_2$ , and mass *m* of the block correspond to two SHM with frequencies  $v_1$  and  $v_2$  given by the relations

$$\frac{k_1}{m} = (2\pi v_1)^2 \text{ and } \frac{k_2}{m} = (2\pi v_2)^2,$$

$$v = \frac{v_1 v_2}{\sqrt{(v_1^2 + v_2^2)}}.$$

we get,