102.

Problem 16.25P (HRW)

Two blocks ($m=1.0 \mathrm{~kg}$ and $M=10 \mathrm{~kg}$) and a spring ($k=200 \mathrm{~N} / \mathrm{m}$) are arranged on a horizontal, frictionless surface as shown in the figure. The coefficient of static friction between the two blocks is 0.40 . We have to find the maximum possible amplitude of simple harmonic motion if no slippage is to occur between the blocks.

Solution:

Data of the problem are:
$m=1.0 \mathrm{~kg}$
$M=10.0 \mathrm{~kg}$
$k=200 \mathrm{~N} \mathrm{~m}^{-1}$.
Maximum acceleration, $a_{\text {max }}$, with which the upper block of mass $m=1.0 \mathrm{~kg}$ can move without slipping on the block of mass $M=10 \mathrm{~kg}$ is determined by the maximum force of static friction between the two blocks.

Coefficient of static friction between the two blocks is $\mu=0.40$. Therefore,

$$
a_{\max }=\frac{\mu m g}{m}=\mu g=0.40 \times 9.8 \mathrm{~m} \mathrm{~s}^{-2}=3.92 \mathrm{~m} \mathrm{~s}^{-2}
$$

Maximum amplitude for motion determines the maximum spring force exerted on the system of two blocks. We therefore have the equation

$$
k x_{\max }=(m+M) a_{\max } .
$$

This gives

