100.

Problem 16.69 (RHK)

Assume that a geosynchronous communication satellite is in orbit at the longitude of Chicago. We have to find the direction in which the axis of a parabolic antenna has to be pointed at Chicago for receiving the maximum signal from the satellite. The latitude of Chicago is $47.5^{0} \mathrm{~N}$.

Solution:

Geometry of the situation is as shown in the diagram.
We use the basic data for a geosynchronous satellite:

$$
\begin{aligned}
& O S=4.22 \times 10^{7} \mathrm{~m} . \\
& O C=6.37 \times 10^{6} \mathrm{~m} .
\end{aligned}
$$

Using the law of cosine we will first estimate the distance of the satellite from Chicago:

$$
C S^{2}=O C^{2}+O S^{2}-2 O C . O S \cos 47.5^{0} .
$$

Substituting the data, we find

$$
C S=3.82 \times 10^{7} \mathrm{~m} .
$$

We once again use the law of cosine for determining the angle $\angle O S C$. We have

$$
2 O S . C S \cos \alpha=O S^{2}+C S^{2}-O C^{2}
$$

Substituting the data, we find

$$
\begin{aligned}
& \cos \alpha=0.991 \\
& \text { or } \\
& \alpha=7.51^{\circ}
\end{aligned}
$$

From the geometry, we note that the angle $\angle S C H$ is

$$
\begin{aligned}
\angle S C H & =180^{\circ}-137.5^{\circ}-7.51^{0}, \\
& =34.9^{\circ} .
\end{aligned}
$$

That is the axis of the parabolic antenna should be pointed at an angle of 34.9° above the horizon in the Southern direction.

