## 98.

## Problem 16.73(RHK)

Three identical stars of mass $M$ are located at the vertices of an equilateral triangle with side $L$. We have to find the speed with which they all revolve under the influence of one another's gravity in circular orbit circumscribing, while still preserving, the equilateral triangle.


## Solution:

It is a three-body problem, which lends itself to a solution. Three stars each of mass $M$ revolve under the influence of one another's gravitational field in circular orbit. Let $v$ be the speed of each star while revolving in a circular orbit of radius $L / \sqrt{3}$. The required centripetal
force for circular motion is

$$
F_{\text {centripetal }}=\frac{M v^{2}}{L / \sqrt{3}} .
$$

The centripetal force on each star is provided by the resultant gravitational force due to the other two stars, which is

$$
F_{\text {graviational }}=2 \times \frac{G M^{2}}{L^{2}} \cos \frac{\pi}{6}=\frac{G M^{2} \sqrt{3}}{L^{2}} .
$$

Equation of motion of each star is

$$
\begin{aligned}
& F_{\text {gravilational }}=F_{\text {centripetal }}, \\
& \text { or } \\
& \frac{G M^{2} \sqrt{3}}{L^{2}}=\frac{M v^{2} \sqrt{3}}{L}, \\
& \text { or } \\
& v=\sqrt{\frac{G M}{L}} .
\end{aligned}
$$

