87.

Problem 16.61 (RHK)

A certain triple-star system consists of two stars, each of mass m, revolving about a central star, mass M, in the same circular orbit. The two stars stay at opposite ends of a diameter of the circular orbit. We have to derive expression for the period of revolution of the stars; we are given that the radius of the orbit is r.

Solution:

Force on any one of the stars of mass m due to the other star of mass m and the third star of mass M is

$$
F=\frac{G M m}{r^{2}}+\frac{G m^{2}}{r^{2}} .
$$

As this star is revolving in a circular orbit of radius r, the gravitational force F on it has to be equal to the centripetal force for uniform circular motion, $m v^{2} / r$.

That is

$$
\frac{m v^{2}}{r}=\frac{G m}{r^{2}}\left(\frac{4 M+m}{4}\right)
$$

Substituting $v=2 \pi r / T$, where T is the orbital period of stars of mass m, we get

$$
\begin{aligned}
& \frac{4 \pi^{2} r^{2}}{T^{2}}=\frac{G(4 M+m)}{4 r} \\
& \text { which gives }
\end{aligned}
$$

