86.

Problem 18.43 (RHK)

A soap bubble of radius 38.2 mm is blown on the end of a narrow tube of length 11.2 cm and internal diameter 1.08 mm . The other end of the tube is exposed to atmosphere. We have to find the time taken for the bubble radius to fall to 21.6 mm . We can assume Poiseuille flow in the tube. Surface tension of the soap bubble solution is $2.50 \mathrm{~N} \mathrm{~m}^{-1}$; and the viscosity of air is $1.80 \times 10^{-5} \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-2}$.
$p_{0}^{+\Delta p}$

$$
\Delta p=\frac{4 \gamma}{r}
$$

Solution:

We will use two results one from surface tension and the other from viscosity for solving this problem.

i.

The gauge pressure Δp inside a soap bubble of radius r is

$$
\Delta p=\frac{4 \gamma}{r},
$$

where γ is the surface tension of the soap solution.

ii.

According to Poiseuille's law of viscous flow of fluid of density ρ in a pipe of radius R, length L, driven by pressur difference Δp is

$$
\frac{d m}{d t}=\frac{\pi \rho R^{4} \Delta p}{8 \eta L} .
$$

As the air from inside the bubble is flowing out through the pipe, its radius will change with time. Let $r(t)$ be the radius of the soap bubble at time t. Mass of air inside the bubble at time t is

$$
m(t)=\frac{4 \pi r^{3}(t) \rho}{3}
$$

where ρ is the density of air.
As the air flows out of the tube the rate of mass flux will be

$$
\frac{d m(t)}{d t}=-4 \pi \rho r^{2} \frac{d r}{d t} .
$$

Note, $\frac{d r}{d t}<0$, as the radius of the bubble will decrease with time when air flows out of it.

With the above two results we can obtain a differential equation for $r(t)$,

$$
-4 \pi \rho r^{2} \frac{d r}{d t}=\frac{\pi \rho R^{r}}{8 \eta L} \cdot \frac{4 \gamma}{r},
$$

or

$$
r^{3} d r=-\frac{R^{4} \gamma}{8 \eta L} d t
$$

Integrating this equation, we find the variation of r as a function of time. It is

$$
\frac{r^{4}(t)}{4}=-\frac{R^{4} \gamma}{8 \eta L} t+c
$$

We solve for the constant of integration c by using the boundary condition that at
$t=0, r(0)=r_{i}$. This condition gives

$$
c=\frac{r_{i}^{4}}{4}
$$

We thus obtain the relation

$$
t=\frac{2 \eta L}{R^{4} \gamma}\left(r_{i}^{4}-r^{4}\right)
$$

Data of the problem is

$$
\begin{aligned}
& r_{i}=38.2 \times 10^{-3} \mathrm{~m}, \\
& r=21.6 \times 10^{-3} \mathrm{~m}, \\
& L=11.2 \times 10^{-2} \mathrm{~m}, \\
& R=0.54 \times 10^{-3} \mathrm{~m}, \\
& \gamma=2.50 \times 10^{-2} \mathrm{~N} \mathrm{~m}^{-1}, \text { and } \\
& \eta=1.80 \times 10^{-5} \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-2} .
\end{aligned}
$$

Substituting these values, we find that the time taken by the bubble radius to fall to 21.6 mm is 3617 s .

