84.

Problem 18.39 (RHK)

Liquid mercury (viscosity, $\eta=1.55 \times 10^{-3} \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-2}$) flows through a horizontal pipe of internal radius 1.88 cm and length 1.26 m . The volume flux is $5.35 \times 10^{-2} \mathrm{~L} \mathrm{~min}^{-1}$. We have to show (a) that the flow is laminar; (b) calculate the pressure between the two ends of the pipe.

Solution:

(a)

In order to find whether the flow is laminar we will calculate the Reynolds number

$$
R=\frac{\rho D v}{\eta}
$$

Internal radius of the pipe is 1.88 cm and the volume flux is

$$
\begin{aligned}
5.35 \times 10^{-2} \mathrm{~L} \mathrm{~min}^{-1} & =\frac{5.35 \times 10^{-2} \times 10^{-3}}{60} \mathrm{~m}^{3} \mathrm{~s}^{-1} \\
& =8.92 \times 10^{-7} \mathrm{~m}^{3} \mathrm{~s}^{-1}
\end{aligned}
$$

Speed of flow of mercury in the pipe

$$
v=\frac{8.92 \times 10^{-7}}{\pi \times\left(1.88 \times 10^{-2}\right)^{2}} \mathrm{~m} \mathrm{~s}^{-1}=8.03 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}
$$

Reynolds number for this speed of flow is

$$
R=\frac{13.6 \times 10^{3} \times 3.76 \times 10^{-2} \times 8.03 \times 10^{-4}}{1.55 \times 10^{-3}}=264.9 .
$$

As this is less than 2000, flow is laminar.
(b)

Volume flux through a pipe of length L and radius r is

$$
\frac{d V}{d t}=\frac{\pi r^{4} \Delta p}{8 \eta L} .
$$

Difference in pressure between the two ends of the pipe is

$$
\begin{aligned}
\Delta p=\frac{8 \eta L}{\pi r^{4}} \frac{d V}{d t} & =\frac{8 \times 1.55 \times 10^{-3} \times 1.26 \times 8.92 \times 10^{-7}}{\pi\left(1.88 \times 10^{-2}\right)^{4}} \\
& =35.5 \mathrm{mPa} .
\end{aligned}
$$

