83. <u>Problem 18.38 (RHK)</u>

We have to calculate the greatest speed at which, blood at 37^o C, can flow through an artery of diameter 3.8 mm if the flow is to remain laminar.

Solution:

The critical speed v_c at which flow of a liquid of density ρ in a pipe of diameter *D* changes from laminar to turbulent is determined by the *Reynolds number R* and the viscosity of the liquid η ,

$$R = \frac{\rho D v_c}{\eta}$$

For cylindrical pipes, the Reynolds number corresponding to critical velocity is about 2000. Density of blood, $\rho_{blood} = 1.060 \times 10^3$ kg m⁻³, and its viscosity at 37^o C, $\eta_{blood} = 4.0 \times 10^{-3}$ N s m⁻². Therefore, the greatest speed at which blood can flow through an artery of diameter 3.8 mm if the flow is to remain laminar is

$$v_c = \frac{2000 \times 4.0 \times 10^{-3}}{1.060 \times 10^3 \times 3.8 \times 10^{-3}} \text{ m s}^{-1} = 1.98 \text{ m s}^{-1}.$$

