80.

Problem 17.56 (RHK)

A solid glass rod of radius $r=1.3 \mathrm{~cm}$ is placed inside and coaxial with a glass cylinder of internal radius $R=1.7 \mathrm{~cm}$. Their bottom ends are aligned and placed in contact with, and perpendicular to, the surface of an open tank of water. We have to find the height y up to which the water will rise in the region between the rod and the cylinder. We can assume that the angle of contact is 0^{0} and use $72.8 \mathrm{mN} / \mathrm{m}$ for the surface tension of water.

Solution:

Problem is a modification of the standard capillary rise in a tube due to surface tension. Total upward force on the
liquid column contained between the coaxial glass rod and the cylinder is

$$
F=2 \pi(R+r) \gamma,
$$

where R is the radius of the cylinder, r is the radius of the glass rod and γ is the surface tension of water.

Weight of the liquid column supported by F is

$$
M g=\pi\left(R^{2}-r^{2}\right) y \rho_{\text {water }} g .
$$

Equating F and $M g$,

$$
\begin{aligned}
y & =\frac{2 \gamma}{(R-r) g \rho_{\text {water }}} \\
& =\frac{2 \times 72.8 \times 10^{-3}}{(1.7-1.3) \times 10^{-2} \times 10^{3} \times 9.8} \mathrm{~m}=3.7 \mathrm{~mm} .
\end{aligned}
$$

Water will rise by 3.7 mm in the region between the rod and the cylinder.

