79.

Problem 17.55 (RHK)

We have to show that the pressure difference between the inside and the outside of a bubble of radius r is $4 \gamma / r$, where γ is the surface tension of the liquid from which the bubble is blown.

Solution:

A soap bubble of radius r, comprises of two surfaces, each of area $4 \pi r^{2}$; the inner and the outer surface of the bubble. Let γ be the surface tension of the solution. By definition γ is the surface energy per unit area. Therefore, the surface energy $U(r)$ of the bubble is

$$
U(r)=8 \pi r^{2} .
$$

Let the radius of the bubble be increased virtually by an infinitesimal amount Δr.

The source of additional surface energy

$$
\Delta U(r)=U(r+\Delta r)-U(r)=16 \pi r^{2} \gamma \Delta r
$$

is the virtual work, $4 \pi r^{2} \Delta p$, done by the gauge pressure Δp inside the bubble. That is

$$
\Delta p 4 \pi r^{2} \Delta r=16 \pi r \gamma \Delta r
$$

$$
\Delta \mathrm{p}=\frac{4 \gamma}{r}
$$

As the bubble is in equilibrium the pressure inside the bubble is $p_{0}+\frac{4 \gamma}{r}$, where p_{0} is the atmospheric pressure outside the bubble. Bubble experiences an inward force because of surface tension which is balanced by the gauge pressure inside the bubble.

