78.

Problem 17.51 (RHK)

How much surface energy is stored in the surface of a soap bubble 2.1 cm in radius if its surface tension is $4.5 \times 10^{2} \mathrm{~N} \mathrm{~m}^{-1}$?

Solution:

An equivalent definition of surface tension is surface energy per unit area.

A soap bubble has two surfaces one outer and the other inner each of area $4 \pi r^{2}$, where r is the radius of the bubble.

Therefore, the surface energy stored in a soap bubble of radius 2.1 cm is

Surface energy $=8 \pi r^{2} \gamma$

$$
=8 \pi\left(2.1 \times 10^{-2}\right)^{2} \times 4.5 \times 10^{-2} \mathrm{~J}=499 \mu \mathrm{~J} .
$$

