76.

Problem 18.23 (RHK)

A jug contains 15 glasses of orange juice. When we open the tap at the bottom it takes 12.0 s to full the first glass. We have to find the time taken when tap is kept open for the jug to empty out.

Solution:

Let the cross-section of the jug be $A \mathrm{~m}^{2}$. Let height of juice at time t in the jug when the tap at the bottom of the jug is open be $h(t)$. Let the area of cross-section of the tap, which is at the bottom of the jug, be $a \mathrm{~m}^{2}$. Let the speed of flow of the juice at time t be $v(t)$.

From this data the initial height of the level of juice in the jug is H and the height when the first glass has been filled will be $14 / 15 \mathrm{H}$.

Also,

$$
v(t)=\sqrt{2 g h(t)} .
$$

Therefore, rate of change of the level of juice in the jug will be

$$
\begin{aligned}
& A \frac{d h(t)}{d t}=-a v(t), \\
& \text { or } \\
& \frac{d h(t)}{d t}=-\frac{a}{A} \sqrt{2 g}(h(t))^{1 / 2} .
\end{aligned}
$$

Integrating this equation, we find that

$$
h^{1 / 2}(t)=H^{1 / 2}-\frac{a}{A} \sqrt{\frac{g}{2}} t .
$$

We are given that the first glass is filled in 12 s . That is $h(12)=\frac{14}{15} H$. This gives

$$
\begin{aligned}
& H^{1 / 2}\left(1-\left(\frac{14}{15}\right)^{1 / 2}\right)=12 \frac{a}{A} \sqrt{g / 2}, \\
& \text { or } \\
& H^{1 / 2} \frac{A}{a} \sqrt{\frac{2}{g}}=354 .
\end{aligned}
$$

Time T for complete draining out of juice from the jug is given by $h(T)=0$, that is

$$
T=H^{1 / 2} \frac{A}{a} \sqrt{\frac{2}{g}}=354 \mathrm{~s} .
$$

We thus find that the time required for filling the remaining 14 glasses after the first glass has been filled will be 342 s or 5 min 42 s .

