73.

Problem 17.43 (RHK)

Three children each of weight 82.4 lb make a log raft by lashing together logs of diameter 1.05 ft and length 5.80 ft . How many logs will be needed to keep them afloat? We can take the density of the wood to be $47.3 \mathrm{lb} / \mathrm{ft}^{3}$.

Solution:

Volume, v, of each \log will be
$v=\pi d^{2} l / 4$, where d is the diameter and l is the length of each log. Therefore,

$$
v=\pi \times 1.05^{2} \times 5.80 / 4 \mathrm{ft}^{3}=5.02 \mathrm{ft}^{3} .
$$

Weight of each log, w, is

$$
w=v \rho_{\text {wood }}=5.02 \times 47.3 \mathrm{lb}=237.55 \mathrm{lb} .
$$

Let the number of logs required for keeping three children each of weight 82.4 lb be n. The total weight of the logs and that of the children will be

$$
W=(3 \times 82.4+237.55 n) \mathrm{lb} .
$$

Density of water in $\mathrm{lb} / \mathrm{ft}^{3}$ is $62.43 \mathrm{lb} / \mathrm{ft}^{3}$. Buoyant force in water for keeping the logs and the children afloat will be volume of the logs times the density of water in $\mathrm{lb} / \mathrm{ft}^{3}$. We, therefore, have the equation from which n can be solved.
$247.2+237.55 n=5.02 \times 62.43 n$.
We find
$n=3.26$.
Therefore, 4 logs will be needed for making a raft that will keep the three children afloat.

