72.

Problem 17.28 (RHK)

The tension in a string holding a solid block below the surface of a liquid (of density greater than the solid) is T_{0} when the containing vessel is at rest. We have to show that the tension T, when the vessel has an upward acceleration a, is given by $T_{0}(1+a / g)$.

Solution:

Let the area of cross-section of the solid block be A and its height be h. Its volume V will be $A h$. Let the density of the solid block be $\rho_{\text {solid }}$.

It is immersed in a liquid of density $\rho_{\text {liquid }}$. It is given that $\rho_{\text {liquid }}>\rho_{\text {solid }}$. The block is tied up to the container with a string. Free-body diagram of the block will be as shown below.

We will draw free-body diagram of the block in two situations: one when the container is at rest and two when the container is under upward acceleration a.

Situation (i)

Let T_{0} be the tension in the string. As the block is in equilibrium the net force in the vertical direction on it has to be zero. That is

$$
T_{0}=F_{b}-W .
$$

W is the weight of the block and is equal to $\rho_{\text {solid }} V g . F_{b}$ is the buoyant force on the block exerted by the liquid and is equal to the weight of the liquid displaced by the block. As the gauge pressure in a stationary liquid is $\rho_{\text {liquid }} g h, F_{b}=\rho_{\text {liquid }} V g$. We, therefore, have the relation

$$
T_{0}=V g\left(\rho_{\text {liquid }}-\rho_{\text {soild }}\right) .
$$

Situation (ii) block are under upward acceleration a. As the liquid is under acceleration, the gauge
pressure in it will vary with depth h as $\rho_{\text {liquid }} h(g+a)$.
Therefore, the buoyant force on the block in this situation will be

$$
F_{b}^{\prime}=\rho_{\text {liquid }} h(g+a) .
$$

As the string remains stretched when the block is under upward acceleration, tension T in it can be found by applying the Newton's second law of motion on the accelerated motion of the block. The equation of motion of the block in this situation is

$$
\begin{aligned}
& \rho_{\text {solid }} V a=F_{b}^{\prime}-W-T, \\
& \text { or } \\
& T=\rho_{\text {liquid }} V(g+a)-\rho_{\text {solid }} V g-\rho_{\text {solid }} V a .
\end{aligned}
$$

In the above expression by substituting

$$
T_{0}=V g\left(\rho_{\text {liquid }}-\rho_{\text {soild }}\right) \text {, we get }
$$

$$
T=T_{0}+\frac{a}{g} T_{0}=T_{0}\left(1+\frac{a}{g}\right)
$$

