71.

Problem 17.26 (RHK)

Consider a container of fluid subject to a vertical upward acceleration a. (a) We have to show that variation of gauge pressure with depth in the fluid is given by

$$
p=\rho h(g+a),
$$

where h is the depth and pis the density. (b) We have to show also that if the fluid as a whole undergoes a vertical downward acceleration a, the gauge pressure at depth h is given by

$$
p=\rho h(g-a) .
$$

(c) What is the state of affair in free fall?

Solution:

We want to find variation of pressure with height in a fluid that as a whole is undergoing upward acceleration a. Density of the fluid
is ρ.
Let us consider an element of the fluid at a depth h from the top of cross-sectional area A and width δh. Let the variation of hydrostatic pressure with depth be given by the function $p(h)$. The free-body diagram of the fluid element will be as shown below.

Downward forces acting on this fluid element will be its weight w and the force due to pressure at depth h, and the upward force on it will be due to the pressure at depth $h+\delta h$. As this fluid element is undergoing upward acceleration a, the equation of motion is

$$
p(h+\delta h) A-p(h) A-\rho \delta h A g=\rho \delta h A a .
$$

Retaining terms up to first order in δh, we get the following equation for the function $p(h)$,

$$
\frac{d p}{d h}=(g+a) \rho
$$

Integrating this differential equation, we find that

$$
p(h)=(g+a) \rho h+p_{0} .
$$

As p_{0} is the pressure at the top layer of the fluid, the gauge pressure in the fluid varies as $(g+a) \rho h$.
(b) Carrying out a similar calculation for the situation when the fluid as a whole undergoes a vertical downward acceleration a, we will find that the gauge pressure at a depth h will vary as

$$
p(h)=(g-a) \rho h .
$$

(c) If the fluid is under free fall, that is $a=g$, the gauge pressure in the fluid will be zero.

