68.

Problem 17.21(HR)

Consider the horizontal acceleration of a mass of liquid in an open tank. Acceleration of this kind causes the liquid surface to drop at the front and to rise at the rear. (a) We have to show that the liquid surface slopes at and angle θ with the horizontal, where $\tan \theta=a / g, a$ being the horizontal acceleration. (b) How does the pressure with depth?

Solution:

Concepts that we will use in solving this problem are that pressure force is perpendicular to fluid surface and that hydrostatic gauge pressure varies with depth by the standard relation $p=h \rho g$. If a fluid element is under acceleration a then the net force on it due to gauge pressure has to be equal to its mass times the acceleration a.

We consider an element of the fluid that is moving horizontally with acceleration. Relevant data concerning
the motion of this element have been shown in the following diagram.

Let L be the length and W be the width of this element of fluid, and let θ be the angle that its surface makes with the horizontal when it is moving horizontally with acceleration a. Let the atmospheric pressure acting on this element of fluid be p_{0}.

Horizontal forces acting on this element are the force due to pressure acting on its vertical face, height $L \tan \theta$ and width W, and the horizontal component of the force due to atmospheric pressure p_{0} acting on the surface of length $L / \cos \theta$ and width W. Force on the vertical face can be calculated by integrating

$$
\Delta F=\left(p_{0}+h \rho g\right) W d h
$$

from 0 to $L \tan \theta$. We get

$$
\begin{aligned}
F_{v} & =\int_{0}^{L \tan \theta}\left(p_{0}+h \rho g\right) W d x \\
& =W p_{0} L \tan \theta+W \rho g(L \tan \theta)^{2} / 2 .
\end{aligned}
$$

Horizontal component of the force due to atmospheric pressure p_{0} on the slanting surface will be
$F_{s}=-W p_{0} L \tan \theta$.
The net horizontal force on the fluid element will be $F_{v}+F_{s}$, that is
$F=W \rho g(L \tan \theta)^{2} / 2$.
Mass of the fluid element is
$M=W L^{2} \tan \theta \rho / 2$.
As it is moving with acceleration a, from the Newton's second law of motion we have

$$
W L^{2} \tan \theta \rho a / 2=W \rho g(L \tan \theta)^{2} / 2,
$$

or
$a=g \tan \theta$.

