60.

Problem 13.39P (HRW)

Four identical bricks of length L are stacked on a table as shown in the figure. We seek to maximise the overhang distance h in both arrangements. We have to find the optimum distances a_{1}, a_{2}, b_{1} and b_{2}, and calculate h for the two arrangements.

Arrangement 2

Solution:

Arrangement 1

Key to maximising overhead distances is by ensuring that the normal force on the concerned brick lies at the edge of the brick/surface on which it is resting.

Brick 3 is resting on brick 4, therefore, maximum value of a_{1} is $L / 2$ and the force that it exerts on brick 4 is W, the weight of the brick and it acts at the right-hand edge of brick 4 .

Using a similar argument as above the force that bricks 1 and 2 exert on the brick 4 is $2 W$ and it acts on its lefthand edge. Therefore, the free-body diagram of the brick 4 is as shown.

We calculate the torque about the left-hand edge of brick 4 and require that for equilibrium the net torque on it has to be zero. This gives
$4 W \times\left(L-a_{2}\right)=W \times L / 2+W \times L$
or
$a_{2}=\frac{5 L}{8}$.
And,
$h=\frac{9 L}{8}$.

Arrangement 2

In this configuration by symmetry, $b_{2}=L / 2$.
We will consider the free-body diagram of brick 3 .
Because of brick 1 there will be a force $W / 2$ on the lefthand edge of brick 3 . From the symmetry we note that a normal force of $3 W / 2$ acts on brick 3 at the right-hand edge of brick 4 , which is at a distance $L-b_{1}$ from the left-hand edge of brick 3 . The free-body diagram of brick 3 is as shown.

Free-body diagram of brick 3

We calculate torque about the left-hand edge of brick 3 and as the brick is in equilibrium the net torque has to be zero. That is
$\frac{3 W\left(L-b_{1}\right)}{2}=\frac{W L}{2}$
or
$b_{1}=\frac{2 W}{3}$.
And,
$h=b_{1}+b_{2}=\frac{7 L}{6}$.

