58.

Problem 14.47 (RHK)

A rotor blade 5.27 m long is composed of material of density $4.55 \mathrm{~g} \mathrm{~cm}^{-3}$ and ultimate tensile strength $446 \mathrm{MN} \mathrm{m}{ }^{2}$. We have to calculate its greatest rotational speed. We can assume that the blade rotates about an axis perpendicular to and through one end of the blade.

Solution:

Let the cross-sectional area of the blade be $A \mathrm{~m}^{2}$. Length of the rotor blade $L=5.27 \mathrm{~m}$. Let ω be the angular speed of the rotor blade.

The centripetal force on the blade can be calculated by integrating contribution of an infinitesimal piece of the blade of width $d x$ at a distance x from the end of the blade connected to the rotor over the length of the blade, $\rho A \omega^{2} x d x$. That is

$$
\begin{aligned}
F & =\int_{0}^{L} \rho A \omega^{2} x d x \\
& =\frac{1}{2} \rho A \omega^{2} L^{2}
\end{aligned}
$$

Tensile stress on the blade is $\frac{F}{A}=\frac{\rho \omega^{2} L^{2}}{2}$.
As the ultimate tensile strength is $446 \mathrm{M} \mathrm{N} \mathrm{m}^{-2}$, we have the relation
$\frac{\rho \omega^{2} L^{2}}{2}=446 \times 10^{6} \mathrm{~N} \mathrm{~m}^{-2}$,
or,
$\omega=\sqrt{\frac{2 \times 446 \times 10^{6}}{4.55 \times 10^{3} \times 5.27^{2}}} \mathrm{rad} \mathrm{s}^{-1}$
$=84 \mathrm{rad} \mathrm{s}^{-1}=\frac{84 \times 60}{2 \pi} \mathrm{rev} \mathrm{min}^{-1}$
$=802 \mathrm{rev} \mathrm{min}^{-1}$.
Therefore, the greatest possible rotation speed of the blade is $802 \mathrm{rev} \mathrm{min}^{-1}$.

