
56. <u>Problem 13.55P (HRW)</u>

A 103 kg uniform log hangs by two steel wires, A and B, both of radius 1.20 mm. Initially, wire A was 2.50 m long and 2.00 mm shorter than wire B. The log is now horizontal. What forces are exerted on it by (a) wire A and (b) wire B? (c) What is the ratio d_A/d_B ?

Solution:

Let *W* be the weight of the log. Let the initial lengths of the wires *A* and *B* be l_A and l_B , respectively. Let f_AW be the pull on wire *A* and f_BW be the pull on the wire *B* due to the weight of the log. From the data of the problem we note the relations

$$f_A d_A = f_B d_B$$

and

 $f_A + f_B = 1.$

Let Δl_A be the increase in length of wire *A* caused by the stress on it and let Δl_B be the corresponding increase in length of wire *B*. As the log becomes horizontal because of the increase in lengths of wires *A* and *B*, we have

$$\Delta l_A = \Delta l_B + 2 \times 10^{-3} \text{ m.}$$

In the following we will approximate

 $l_A \approx l_B = l = 2.50$ m.

Young's modulus of steel $E = 200 \times 10^9$ N m⁻². Let area of cross-section of wires A and B be

 $a = \pi \times 1.2^2 \times 10^{-6} \text{ m}^2 = 4.52 \times 10^{-6} \text{ m}^2.$

From Hook's law of elasticity, we have

$$\Delta l = \frac{Fl}{Ea}.$$

We, therefore, have

$$\frac{f_A Wl}{Ea} - \frac{f_B Wl}{Ea} = 2.00 \times 10^{-3} \text{ m},$$

or

$$f_A - f_B = \frac{2.00 \times 10^{-3} \times 200 \times 10^9 \times 4.52 \times 10^{-6}}{103 \times 9.8 \times 2.5} = 0.716 \ .$$

We thus find

$$f_{A} = 0.858$$

and
 $f_{B} = 0.142.$
(c)
And,
 $\frac{d_{A}}{d_{B}} = \frac{f_{B}}{f_{A}} = 0.166.$
(a) and (b)
Force exerted on wire *A* is
 $f_{A}W = 0.858 \times 103 \times 9.8$ N = 866 N,
and
 $f_{B}W = 0.142 \times 103 \times 9.8$ N = 143 N.

X