56.

Problem 13.55P (HRW)

A 103 kg uniform log hangs by two steel wires, A and B, both of radius 1.20 mm . Initially, wire A was 2.50 m long and 2.00 mm shorter than wire B. The log is now horizontal. What forces are exerted on it by (a) wire A and (b) wire B? (c) What is the ratio d_{A} / d_{B} ?

Solution:

Let W be the weight of the log. Let the initial lengths of the wires A and B be l_{A} and l_{B}, respectively. Let $f_{A} W$ be the pull on wire A and $f_{B} W$ be the pull on the wire B due to the weight of the log. From the data of the problem we note the relations

$$
f_{A} d_{A}=f_{B} d_{B},
$$

and
$f_{A}+f_{B}=1$.
Let Δl_{A} be the increase in length of wire A caused by the stress on it and let Δl_{B} be the corresponding increase in length of wire B. As the \log becomes horizontal because of the increase in lengths of wires A and B, we have $\Delta l_{A}=\Delta l_{B}+2 \times 10^{-3} \mathrm{~m}$.

In the following we will approximate
$l_{A} \approx l_{B}=l=2.50 \mathrm{~m}$.
Young's modulus of steel $E=200 \times 10^{9} \mathrm{~N} \mathrm{~m}^{-2}$. Let area of cross-section of wires A and B be
$a=\pi \times 1.2^{2} \times 10^{-6} \mathrm{~m}^{2}=4.52 \times 10^{-6} \mathrm{~m}^{2}$.
From Hook's law of elasticity, we have
$\Delta l=\frac{F l}{E a}$.
We, therefore, have

$$
\frac{f_{A} W l}{E a}-\frac{f_{B} W l}{E a}=2.00 \times 10^{-3} \mathrm{~m},
$$

or

$$
f_{A}-f_{B}=\frac{2.00 \times 10^{-3} \times 200 \times 10^{9} \times 4.52 \times 10^{-6}}{103 \times 9.8 \times 2.5}=0.716 .
$$

We thus find
$f_{A}=0.858$
and
$f_{B}=0.142$.
(c)

And,
$\frac{d_{A}}{d_{B}}=\frac{f_{B}}{f_{A}}=0.166$.
(a) and (b)

Force exerted on wire A is
$f_{A} W=0.858 \times 103 \times 9.8 \mathrm{~N}=866 \mathrm{~N}$, and
$f_{B} W=0.142 \times 103 \times 9.8 \mathrm{~N}=143 \mathrm{~N}$.

