Problem 13.54P (HRW)

A lead brick rests horizontally on cylinders A and B. The areas of the top faces of cylinders are related by $A_A = 2A_B$; the Young's moduli of cylinders are related by $E_A = 2E_B$. The cylinders had identical lengths before the brick was placed on them. What fraction of the brick's weight is supported (a) by cylinder A and (b) by cylinder B? The horizontal distances between the centre of mass of the brick and the centres of lines of the cylinders are d_A for cylinder A and d_B for cylinder B. (c) What is the ratio d_A/d_B ?

55.

Solution:

(a) and (b)

Let *W* be the weight of the brick. Let f_A and f_B be the fractions of the weight *W* supported by cylinders *A* and *B*, respectively. As d_A and d_B are the distances from the centre of mass of the brick where $f_A W$ and $f_B W$ are acting on the cylinders *A* and *B*. This implies

 $f_A d_A = f_B d_B.$

By definition

 $f_A + f_B = 1.$

$$\frac{f_A W}{A_A E_A} = \frac{f_B W}{A_B E_B}.$$

Using the data given in the problem, the above relation can be rewritten as

$$f_A = 4f_B.$$

Therefore,

$$f_A = \frac{4}{5}$$
 and $f_B = \frac{1}{5}$.

(c)

Using the results above, we find

$$\frac{d_A}{d_B} = \frac{1}{4}.$$

