
49. <u>Problem 13.52P (HRW)</u>

A tunnel 150 m long, 7.2 m high, and 5.8 m wide (with a flat roof) is to be constructed 60 m beneath the ground. The tunnel roof is to be supported entirely by square steel columns, each with a cross-sectional area of 960 cm². The density of the ground material is 2.8 gm cm⁻³. (a) What is the total weight that the column must support? How many columns are needed to keep the compressive stress on each column at one-half its ultimate strength?

Solution:

Dimensions of the tunnel are length, l = 150 m, width, w = 5.8 m, and height, h = 7.2 m. Depth of the tunnel from the ground, H = 60 m. Volume of the ground material above the tunnel, $V = H \times l \times w = 60 \times 150 \times 5.8$ m³ = 5.22×10^4 m³. Density of the ground material, $\rho = 2.8 \times 10^3$ kg m⁻³. Weight of the ground material on the tunnel,

$$W = V \rho g = 5.22 \times 10^4 \times 2.8 \times 10^3 \times 9.8 \text{ N}$$

= 1.43×10⁹ N.

It is given that the planned maximum compression stress on each column is $\frac{1}{2}$ of the ultimate strength of concrete, that is 20×10^6 N m⁻². Cross-sectional area of each column is $A = 9.6 \times 10^{-2}$ m². Therefore, maximum force that each column can support will be $20 \times 10^6 \times 9.6 \times 10^{-2}$ N= 1.9×10^6 N.

Therefore, number of concrete columns, N, required in the tunnel is given by the expression

 $N = \frac{\text{weight of the ground material to be supported}}{\text{maximum force that each column can support}}$ $= \frac{1.43 \times 10^9}{1.9 \times 10^6} = 750.$

