46. 

## Problem 13.29P (HRW)

A force $F$ is applied horizontally at the axle of a wheel for raising the wheel over an obstacle of height $h$. We have to find the force $F$ necessary for raising the wheel over the obstacle. We can take $r$ as the radius of the wheel and $W$ as its weight.


## Solution:



When the wheel is just about to rise over the obstacle there will be no normal force from the ground it. In addition to the weight $W$ and force $F$ the wheel will experience a normal force $T$ exerted by the edge of the obstacle, indicated by $O$ in the free-body diagram of the wheel. Let $x$ be the moment arm of the
force $W$ about the point $O$. From geometry we have the relation
$\sqrt{\left(r^{2}-x^{2}\right)}+h=r$,
or,
$x=\left(2 r h-h^{2}\right)^{1 / 2}$.
We calculate the torque about the point $O$. Condition for equilibrium is that net torque has to be zero. This gives the condition
$F(r-h)=W\left(2 r h-h^{2}\right)^{1 / 2}$
or,
$F=\frac{W\left(2 r h-h^{2}\right)^{1 / 2}}{(r-h)}$.

