## 34.

## Problem 12.49P (HRW)

Two cylinders having radii $R_{1}$ and $R_{2}$ and rotational inertias $I_{1}$ and $I_{2}$ about the central axis are supported by axes perpendicular to the plane of the figure as shown. The large cylinder is initially rotating with angular velocity $\omega_{0}$. The small cylinder is moved to the right until it touches the large cylinder and is caused to rotate by the frictional force between the two. Eventually, slipping ceases, and the two cylinders rotate at constant rates in opposite directions. We have to find the angular velocity $\omega_{2}$ of the small cylinder in terms of $I_{1}, I_{2}, R_{1}, R_{2}$, and $\omega_{0}$.


## Solution:

In this problem neither angular momentum nor kinetic energy are constants of motion. We will solve this
problem by calculating changes in angular momentum arising out of angular impulse.

Let us assume that the two cylinders are in contact with each other for time $\Delta t$ and let $F$ be the magnitude of the force of friction exerted by each cylinder on the other when in contact and that at the end of this time interval both the cylinders begin to rotate without slipping. Let $v$ be the speed of the rims of each cylinder after slipping has ceased. Let $\omega_{2}$ be the angular speed of the smaller cylinder and $\omega_{1}$ be the angular speed of the cylinder of radius $R_{1}$ when they begin to rotate without slipping. This implies

$$
\omega_{1} R_{1}=\omega_{2} R_{2} .
$$

Equations of angular impulse are

$$
\begin{aligned}
& F R_{1} \Delta t=I_{1}\left(\omega_{0}-\omega_{1}\right), \\
& F R_{2} \Delta t=I_{2} \omega_{2} .
\end{aligned}
$$

Solving these three algebraic equations, we find

$$
\omega_{2}=\frac{I_{1} \omega_{0}}{\left(\frac{I_{2} R_{1}}{R_{2}}+\frac{I_{1} R_{2}}{R_{1}}\right)} .
$$

