28.

Problem 12.69P(HRW)

The particle of mass m as shown in the figure slides down the frictionless surface and collides with a uniform vertical rod, sticking to it. The rod pivots about O through the angle θ before momentarily coming to rest. We have to find θ in terms of other parameters given in the figure.

Solution:

We will first find the distance, $h_{c m}$, of the centre of mass of the combined system of rod of mass M and the particle of mass m from the point O, when the mass m has just stuck to the rod. From the definition of the centre of mass, we get
$h_{c m}=\frac{\frac{1}{2} M l+m l}{M+m}$.
The speed v of the particle just before its impact with the rod can be calculated from the principle of conservation of energy. We have
$\frac{1}{2} m v^{2}=m g h$,
or
$v=\sqrt{2 g h}$.
The angular momentum l of the particle about O is
$l=m v=m l \sqrt{2 g h}$
The moment of inertia I of the combined system of the rod and the particle about the axis passing through O is $I=\frac{1}{3} M l^{2}+m l^{2}$, or
$\left.I=l^{2}\left(\frac{1}{3} M+m\right)\right)$.
Let ω be the angular speed of the rod and the particle just after the impact. From the principle of conservation of angular momentum, we have
$I \omega=m l \sqrt{2 g h}$, which gives
$\omega=\frac{m l \sqrt{2 g h}}{I}$.

The kinetic energy of the combined system of the rod and the particle just after the impact will be K.E. $=\frac{1}{2} I \omega^{2}=\frac{m^{2} l^{2} g h}{I}=\frac{m^{2} g h}{\left(\frac{1}{3} M+m\right)}$.

We are given that the rod pivots about O through the angle θ before momentarily coming to rest. At that position the centre of mass of the rod and the particle will have risen in height by $h_{c m}^{\prime}=(1-\cos \theta) h_{c m}$. From the principle of conservation of energy we have $\frac{1}{2} I \omega^{2}=(M+m) g h_{c m}^{\prime}$, or
$\frac{m^{2} g h}{\left(\frac{1}{3} M+m\right)}=\frac{(M+m)\left(\frac{1}{2} M+m\right) l(1-\cos \theta)}{(M+m)}$,
or
$1-\cos \theta=\frac{m^{2} h}{\left(\frac{1}{3} M+m\right)\left(\frac{1}{2} M+m\right) l}$,
or
$\theta=\cos ^{-1}\left[1-\frac{6 m^{2} h}{l(2 m+M))(3 m+M)}\right]$.

