27.

Problem 12.62P (HRW)

A cockroach of mass m runs counterclockwise around a circular disk mounted on a vertical axis of radius R and rotational inertia I and having frictionless bearings. The cockroach's speed (relative to Earth) is v, whereas the disk turns clockwise with angular speed ω_{0}. The cockroach finds a breadcrumb on the rim and of course stops.
(a) What is the angular speed of the disk after the cockroach stops?
(b) Is mechanical energy conserved?

Solution:

(a)

We will apply the conservation of angular momentum for solving this problem. The angular momentum of the cockroach-disk system when the cockroach is moving with speed v in counterclockwise direction and the disk is turning with angular speed ω_{0} will be
$L=I \omega_{0}-m \nu R$.

After the cockroach stops the system of disk-cockroach will rotate together as a rigid body. Let ω be the changed angular speed of the system. As the moment of inertia of the disk-cockroach system is $I+m R^{2}$, the conservation of angular momentum implies
$\left(I+m R^{2}\right) \omega=I \omega_{0}-m \nu R$,
or
$\omega=\frac{I \omega_{0}-m \nu R}{I+m R^{2}}$.
(b)

The initial kinetic energy is $\left(\frac{1}{2} m v^{2}+\frac{1}{2} I \omega_{0}^{2}\right)$ and the final kinetic energy is $\frac{L^{2}}{2\left(I+m R^{2}\right)}=\frac{\left(I \omega_{0}-m v R\right)^{2}}{2\left(I+m R^{2}\right)}$. Therefore, the kinetic energy is not conserved.

