25.

Problem 12.58E (HRW)

With centre and spokes of negligible mass, a certain bicycle wheel has a thin rim of radius 1.14 ft and weight 8.36 lb ; it can turn on its axle with negligible friction. A man holds the wheel above his head with the axle vertical while he stands on a turntable free to rotate without friction; the wheel rotates clockwise, as seen from above, with an angular speed of $57.7 \mathrm{rad} \mathrm{s}^{-1}$, and the turntable is initially at rest. The rotational inertia of wheel + man+ turntable about the common axis of rotation is 1.54 slug ft^{2}. The man's free hand suddenly stops the rotation of the wheel (relative to the turntable). Determine the angular velocity (magnitude and direction of the system).

Solution:

In this problem data has been given in the British fps system. In this system of units the basic unit of mass is slug, of length is ft , and of force is lb . Slug and lb are
connected by the relation that a mass of 1 slug under acceleration of $32 \mathrm{ft} \mathrm{s}^{-2}$ experiences a force of 1 lb . There is no external torque on the system about the direction of the vertical axis. Therefore, angular momentum is a constant of motion.

Radius of the bicycle wheel $=1.14 \mathrm{ft}$.
Weight of the wheel $=8.36 \mathrm{lb}$.
Therefore, mass of the wheel $=8.36 / 32.17$ slug $=0.259$ slug.

Moment of inertia of the wheel, $I=m r^{2}$

$$
\begin{aligned}
& =0.259 \times 1.14^{2} \text { slug } \mathrm{ft}^{2} \\
& =0.337 \mathrm{slug} \mathrm{ft}^{2}
\end{aligned}
$$

Wheel is spinning with speed, $\omega=57.7 \mathrm{rad} \mathrm{s}^{-1}$.
Angular momentum of the wheel, which is also the angular momentum of wheel+ man+ turntable,

$$
L=I \omega=0.337 \times 57.7 \operatorname{slug~ft}^{2} \mathrm{~s}^{-1}=19.48 \operatorname{slug~ft}^{2} \mathrm{~s}^{-1} .
$$

Rotational inertia of wheel+ man+ turntable

$$
I_{s y s}=1.54 \text { slug } \mathrm{ft}^{2}
$$

As no external torque is exerted on the system when the rotation of the wheel is stopped by the man using his free- hand (relative to turntable), the angular momentum
of the system will be L. The rotational angular speed of the system can now be calculated using the definition $\omega=\frac{L}{I_{\text {sys }}}=\frac{19.48}{1.54} \mathrm{rad} \mathrm{s}^{-1}=12.65 \mathrm{rad} \mathrm{s}^{-1}$.

The direction of rotation will continue to remain clockwise when seen from top.

