18.

Problem 11.45E (HRW)

Calculate the rotational inertia of a wheel that has a kinetic energy of $24,400 \mathrm{~J}$ when rotating at $602 \mathrm{rev} / \mathrm{min}$.

Solution:

The angular speed of the wheel in rad/s will be
$\omega=602 \times \frac{\mathrm{rev}}{\mathrm{min}}=\frac{602 \times 2 \pi}{60} \frac{\mathrm{rad}}{\mathrm{s}}=63.04 \mathrm{rad} \mathrm{s}^{-1}$.
The rotational kinetic energy is $\frac{1}{2} I \omega^{2}$, where I is the rotational inertia. As the kinetic energy of the wheel is $24,400 \mathrm{~J}$, its rotational inertia will be
$I=\frac{2 \times 24,400}{63.04^{2}} \mathrm{~kg} \mathrm{~m}^{2}=12.3 \mathrm{~kg} \mathrm{~m}^{2}$.

