16.

Problem 12.6E (HRW)

An automobile has a total of mass of 1700 kg . It accelerates from rest to $40 \mathrm{~km} / \mathrm{h}$ in 10 s . Assume each wheel is a uniform 32 kg disk. Find, for the end of the 10 s interval, (a) the rotational kinetic energy of each wheel about its axle, (b) the total kinetic energy of each wheel, and (c) the total kinetic energy of the automobile.

Solution:

(a)

Let m be the mass and r be the radius of each wheel. Assuming that each wheel is a uniform disk, the rotational inertia of each wheel will be given by the expression $I_{\text {wheel }}=\frac{1}{2} m r^{2}$. Let v be the speed of the car after 10 s starting from rest.
$v=\frac{40 \times 10^{3}}{3600} \mathrm{~m} \mathrm{~s}^{-1}=11.11 \mathrm{~m} \mathrm{~s}^{-1}$.
As the car is moving normally that is without slipping the angular speed of each wheel will be

$$
\omega=v / r .
$$

The rotational kinetic energy of each wheel will, therefore, be

$$
\begin{gathered}
K E_{\text {rot-wheel }}=\frac{1}{2} I_{\text {wheel }} \omega^{2}=\frac{1}{2} \times \frac{1}{2} m v^{2}, \\
=8 \times 11.11^{2} \mathrm{~J}=987.6 \mathrm{~J}
\end{gathered}
$$

(b)

As the centre of mass of each wheel is moving with speed v, the kinetic energy of translation of each wheel will be

$$
K E_{\text {trans-wheel }}=\frac{1}{2} m v^{2}=1975.3 \mathrm{~J}
$$

The total kinetic energy of each wheel will be
$K E_{\text {rot-wheel }}+K E_{\text {trans-wheel }}=2963 \mathrm{~J}$.
(c)

The total kinetic energy of the automobile will be the sum of the translational kinetic energy of the automobile and the rotational kinetic energy of the 4 wheels. Therefore,

$$
K E_{\text {automobile }}=\left(\frac{1}{2} \times 1700 \times 11.11^{2}+4 \times 987.6\right) \mathrm{J} ; 1.1 \times 10^{5} \mathrm{~J}
$$

