4.

Problem 11.46P (HRW)

The oxygen molecule, O_{2}, has a total mass of $5.30 \times 10^{-26} \mathrm{~kg}$ and a rotational inertia of $1.94 \times 10^{-46} \mathrm{~kg} \mathrm{~m}^{2}$ about an axis through the centre of the line joining the atoms and perpendicular to that line. Suppose that such a molecule in a gas has a speed of $500 \mathrm{~m} \mathrm{~s}^{-1}$ and that its rotational kinetic energy is twothirds of its translational kinetic energy. We have to find its angular velocity.

Solution:

Mass of the oxygen molecule, $M_{O_{2}}=5.30 \times 10^{-26} \mathrm{~kg}$.
Its rotational inertia, $I=1.94 \times 10^{-46} \mathrm{~kg} \mathrm{~m}^{2}$.
Speed of the molecule, $v=500 \mathrm{~m} \mathrm{~s}^{-1}$.
Its kinetic energy of translation,

$$
K E_{t r}=\frac{1}{2} M_{o_{2}} v^{2}=\frac{1}{2} \times 5.30 \times 10^{-26} \times 500^{2} \mathrm{~J}=6.625 \times 10^{-21} \mathrm{~J}
$$

In the problem it has been given that the rotational kinetic energy of the molecule is two-thirds of its translational kinetic energy. That is

$$
K E_{\text {rot }}=\frac{2}{3} \times 6.625 \times 10^{-21} \mathrm{~J}=4.416 \times 10^{-21} \mathrm{~J} .
$$

Rotational velocity, ω, of the molecule can be calculated from the relation

$$
K E_{r o}=\frac{1}{2} I \omega^{2} .
$$

Therefore,

$$
\begin{aligned}
\omega & =\sqrt{2 K E_{r o} / I}=\sqrt{2 \times 4.416 \times 10^{-21} / 1.94 \times 10^{-46}} \\
& =6.7 \times 10^{12} \mathrm{rad} \mathrm{~s}^{-1} .
\end{aligned}
$$

